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ABSTRACT 
    Digital predistortion (DPD) is a baseband signal processing technique that corrects for impairments in RF 

power amplifiers (PAs). These impairments cause out-of-band emissions or spectral regrowth and in-band 

distortion, which correlate with an increased bit error rate (BER). Wideband signals with a high peak-to-average 

ratio, are more susceptible to these unwanted effects.  So to reduce these impairments, this paper proposes the 

modeling of the digital predistortion for the power amplifier using GSA algorithm. 

Keywords - Adjacent channel power ratio, Digital Predistortion, linearization, Memory polynomial, Power 

Amplifier.
 

I. INTRODUCTION 
PA are one of the most expensive and most 

power-consuming components in modern 

communication systems. They are inherently 

nonlinear, and when operated near saturation, cause 

intermodulation products that interfere with adjacent 

and alternate channels. This interference affects the 

adjacent channel power ratio (ACPR) and its level is 

strictly limited by FCC and ETSI regulations [1]. 

Analog predistortion technology shares similarities 

with DPD in the sense that both compensate for 

amplitude-modulation-to-amplitude-modulation 

(AM-AM) and amplitude-modulation-to-phase-

modulation (AM-PM) distortion, intermodulation and 

PA memory effects, and both employ feedback 

information to compensate for impairments due to 

temperature variations and PA aging [2]. Though 

both approaches share underlying theoretical 

similarities, the similarities end with their circuit 

design and system implementations. DPD is one of 

the commonly used linearizing technique because of 

its robustness, moderate implementation cost and 

high accuracy. In DPD linearization technique, as 

shown in Figure 1, the predistorter (PD) is added in 

the front of the PA of a nonlinear device with 

extended nonlinear characteristics just opposite to the 

nonlinear characteristics of PA [3]. It is used to 

increase the efficiency of Power Amplifiers, by 

reducing the distortion caused by Power Amplifiers 

operating in their non-linear regions. Wireless base 

stations not employing DPD algorithms typically 

exhibit low efficiency, and therefore high operational 

and capital equipment costs.  

   

 

 

 

 

 

 

Fig. 1.   DPD Process of linearization 

 

This implies that for having linear amplification and 

thus being compliant with linearity requirements 

specified in communication standards, significant 

back-off levels in PA amplification are needed. Back-

off amplification results in a power inefficient 

amplification, moreover when the PA has to handle 

signals presenting high PAPRs. The use of PA 

linearizers arises as a recognized solution to deal with 

this trade-off between linearity and efficiency. The 

generic configuration can be seen as a simplified 

decomposition of a general Volterra series function. 

Among these solutions it is possible to find DPD 

based on memory polynomials, where the LTI block 

is usually described by a finite impulse response 

(FIR) filter [4].  So in this paper GSA algorithm is 

used to find the coefficients required to model the 

DPD and PA. Section I is introduction, rest of the 

paper is as, section II is memory polynomial for 

modeling the DPD, section III is about GSA 

algorithm, algorithm steps are discussed in section 

IV, section V is results for model extraction using 

GSA algorithm and section VI concludes the paper.  
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II. MEMORY POLYNOMIAL MODEL 

FOR DPD 
The memory polynomial model used is 

equivalent to the Parallel Hammerstein model [5-6]. 

Parallel Hammerstein model can be given as: 
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The memory polynomial model, however offers a 

good compromise between generality and ease of 

parameter estimation and implementation. The 

memory polynomial model consists of several delay 

taps and non-linear static functions. The memory 

polynomial model is a truncation of the general 

Volterra series, which consists of only the diagonal 

terms in the Volterra kernels [6]. Thus, the number of 

parameters is significantly reduced compared to 

general Volterra series. The model used in present 

work to develop a polynomial model of a nonlinear 

system with memory is a truncation of the general 

Volterra series, which can be shown as [5]: 
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Where ( )x n  is the input complex base band signal, 

( )y n  is the output complex base band signal, ,k qc  

are complex valued parameters, M  is the memory 

depth, K  is the order of the polynomial. 

In DPD process, one stimulates a non-linear PA with 

baseband samples and observes the result of that 

stimulus at the PA output. Then the amplitude-to- 

amplitude modulation (AM/AM) and amplitude-to-

phase modulation (AM/PM) effects of the PA are 

estimated. These estimated distortions are then 

removed from the PA by pre-distorting the input 

stimulus with their inverse equivalents [6].  

 

III. GRAVITATIONAL SEARCH 

ALGORITHM (GSA) 
GSA is the optimization technique, in which 

agents  are  considered  as  objects and  their  

performance  is  measured  by  their  masses. All 

these objects attract each other by the gravity force, 

and this force causes a global movement of all 

objects   towards   the   objects   with   heavier   

masses. Hence,   masses   cooperate   using   a   direct   

form   of communication,   through   gravitational   

force.   The heavy  masses  which  correspond  to  

good  solutions move  more  slowly  than  lighter  

ones,  this  guarantees the exploitation step of the 

algorithm. In     GSA,     each     mass has     four 

specifications:     position,     inertial     mass,     

active gravitational mass, and passive gravitational 

mass. The position of the mass corresponds to a 

solution of the problem, and its gravitational and 

inertial masses are determined using a fitness 

function [7]. 

 

IV. GSA ALGORITHM STEPS: 

Step 1: Initialize of the agents (masses). 

Initialize the positions of the  number of agents 

randomly within the given search interval as below: 
1 2, ,..., ,...,d n

i i i i iX x x x x for 1,2,3,...,i N  

(3) 

Where,  represents the positions of the i
th

   agent 

in the d
th

 dimension and  is the space dimension. 

Step 2: Fitness evolution and best fitness 

computation for each agent:  

Perform the fitness evolution for all agents at each 

iteration and also compute the best and worst fitness 

at each iteration defined as below (for minimization 

problems): 
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Where,  jfit t  represents the fitness of the j
th

 agent 

at iteration ,  best t  and  worst t  represents 

the best and worst fitness at generation . 

Step 3: Compute gravitational constant G:  

Compute gravitational constant G at iteration t using 

the following equation: 

 
 t

T
oG t G



            (6) 

In this problem, oG  is set to 100,  is set to 20 and 

 is the total number of iterations. 

Step 4: Calculate the mass of the agents:  

Calculate gravitational and inertia masses for each 

agents at iteration by the following equations: 

 

 

  (7) 

Where,  is the active gravitational mass of the i
th

  

agent,  is the passive gravitational mass of the i
th

 

agent,  is the inertia mass of the i
th

 agent. 

Step 5: Calculate accelerations of the agents: 

Compute the acceleration of the i
th

 agents at iteration 

t as below: 

        (8) 
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Where,  is the total force acting on i-th agent 

calculated as: 

                      (9) 

 is the set of first  agents with the best fitness 

value and biggest mass.  is computed in such a 

manner that it decreases linearly with time and at last 

iteration the value of  becomes 2% of the initial 

number of agents.  is the force acting on agent 

'i' from agent 'j' at d
th

 dimension and t
th

 iteration is 

computed as below: 

 

    (10) 

Where,  is the Euclidian distance between two 

agents 'i' and 'j' at iteration t and  is the 

computed gravitational constant at the same iteration. 

 is a small constant 

 

Step 6: Update velocity and positions of the 

agents:  

Compute velocity and the position of the agents at 

next iteration (t + 1) using the following equations: 

 

 (11) 

 

Step 7: Repeat Steps 2 to 6 to get maximum limit 

(iterations).  
Return the best fitness computed at final iteration as a 

global fitness of the problem and the positions of the 

corresponding agent at specified dimensions as the 

global solution of that problem [7-8]. 

 

V. RESULTS 
Model extraction using GSA algorithm 

Calculation of proposed model coefficients 

requires non-linear system identification techniques. 

In proposed paper, least square (LS) estimation with 

GSA algorithm has been used to obtain the model 

coefficients. In order to validate the proposed 

modeling techniques, a wideband PA data has been 

taken. The modeled PA was operated with OFDM 

signal of 2.4GHz frequency and 5 MHz bandwidth. 

To model the DPD using memory polynomial, the 

nonlinearity of the model i.e. the order of the 

polynomial, K  was truncated to 7. To consider the 

memory effects, the memory depth, M was taken as 

4. The lower channel values were measured at -10 

MHz and -5 MHz, while upper channel values were 

measured at 5 MHz and10 MHz. To evaluate the 

DPD model, the coefficients of memory polynomial 

have been calculated using GSA algorithm. The AM-

AM characteristics are very useful to show the 

behavior of DPD and PA model shown in Fig. 2. The 

modeled PA and DPD using GSA algorithm are 

shown in Fig. 3 and 4. The ACPR values for the 

actual data, modeled PA and modeled DPD are 

shown in table 1. From these figures and table, the 

ACPR reduction, accuracy and simplicity of the 

proposed technique can be easily analyzed.  

 

VI. CONCLUSIONS 
Due to its ease of implementation and high 

ACPR improvement capability, adaptive DPD is one 

of the widely used approach for PA linearization. So 

to increase the system efficiency in wideband 

transmitters and considering the linearity 

requirement, DPD for PA linearization is proposed. 

Due to moderate implementation complexity, the 

proposed approach uses GSA algorithm for 

extraction of DPD and PA coefficients. Simulations 

were carried out to evaluate the performance of the 

models of DPD and PA using the GSA algorithm. 

Results show that proposed scheme is quite simple 

and its performance is equally comparable with other 

techniques. 
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Figure 2: AM-AM characteristics of PA and DPD 

using GSA algorithm 
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Figure 3: Power spectral density for modeled PA 

using GSA algorithm 
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Figure 4: Power spectral density for modeled DPD 

using GSA algorithm 

 

Table 1. ACPR Measurements for Modeled PA      

and DPD using GSA algorithm (in dB) 

Parameter Actual  
PA 

Modeled   

DPD 

Modeled            

Lower 

ACPR 2 

-59.4759 
-80.7511 

-58.6616 

Lower 

ACPR 1 

-47.0499 
--74.2885 

-45.5804 

Upper 

ACPR 1 

-46.5342 
-76.5738 

-45.3997 

Upper 

ACPR 2 

-60.7407 
-81.4125 

-55.4727 
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